
PostgreSQL System Architecture

Heikki Linnakangas / VMware Ltd

July 4th, 2014



What is Software Architecture?

the fundamental organization of a system embodied in its

components, their relationships to each other, and to the

environment, and the principles guiding its design and

evolution. [IEEE 1471]



Software Architecture document

I Not a single diagram

I Multiple diagrams presenting different viewpoints

I Process View

I Development View

I Functional View



Architecture vs. Design

Architecture = Design

just at a higher level

I The Software Architect decides which decisions are part of
architecture, and which can be left to Design or
Implementation.

I This presentation is based on my opinions.

Questions? Feel free to interrupt.



Part 0: Non-functional requirements

I Data integrity
I Performance
I Scalability
I Reliability
I Interoperability
I Portability
I Extensibility
I Maintainability (code readability)



Example: Extensibility

PostgreSQL has a highly extensible type system.

I Behavior of all datatypes is defined by operators and operator
classes:

CREATE OPERATOR name (

PROCEDURE = function_name

[, LEFTARG = left_type ] [, RIGHTARG = right_type ]

[, COMMUTATOR = com_op ] [, NEGATOR = neg_op ]

[, RESTRICT = res_proc ] [, JOIN = join_proc ]

[, HASHES ] [, MERGES ]

)

I Including all built-in types



Example: Extensibility vs Performance

Built-in int4 < operator:

Datum

int4lt(PG_FUNCTION_ARGS)

{

int32 arg1 = PG_GETARG_INT32(0);

int32 arg2 = PG_GETARG_INT32(1);

PG_RETURN_BOOL(arg1 < arg2);

}



Example: Extensibility vs Performance

Extensibility makes e.g PostGIS possible.

It comes at a price:

I Cannot assume anything about how an operator behaves,
except what’s specified in the CREATE OPERATOR
statement

I No exceptions for built-in types.

I No special case e.g. for sorting integers



Part 1: Process View

PostgreSQL consists of multiple process that communicate via
shared memory:

I Postmaster

I One backend process for each connection

I Auxiliary processes

I autovacuum launcher
I autovacuum workers
I background writer
I startup process (= WAL recovery)
I WAL writer
I checkpointer
I stats collector
I logging collector
I WAL archiver
I custom background workers



Part 1: Process View

~$ ps ax | grep postgres

29794 pts/7 S 0:00 ~/pgsql.master/bin/postgres -D data

29799 ? Ss 0:00 postgres: checkpointer process

29800 ? Ss 0:00 postgres: writer process

29801 ? Ss 0:00 postgres: wal writer process

29802 ? Ss 0:00 postgres: autovacuum launcher process

29803 ? Ss 0:00 postgres: stats collector process

29826 ? Ss 0:00 postgres: heikki postgres [local] idle



Postmaster

I Listens on the TCP socket (port 5432) for connections
I forks new backends as needed
I Parent of all other processes
I listens for unexpected death of child processes
I initiates start / stop of the system



Postmaster

Reliability is very important:

I Does not touch shared memory

I except a little bit

I No locking between postmaster and other processes
I Never blocks waiting on the client



Backends

One regular backend per connection. Communicates with other
server processes via shared memory

1. Postmaster launches a new backend process for each incoming
client connection.

2. Backend authenticates the client

3. Attaches to the specified database

4. Execute queries.

. . . when the client disconnects:

5. Detaches from shared memory

6. exit



Startup process

Launched once at system startup

I Reads the pg control file and determines if recovery is needed
I Performs WAL recovery



Auxiliary processes

Background writer:

I Scans the buffer pool and writes out dirty buffers

WAL writer:

I Writes out dirty WAL buffers

The system will function OK without these.



More auxiliary processes

These are not attached to shared memory:

I stats collector

I logging collector

I WAL archiver



Part 2: Shared Memory

PostgreSQL processes use shared memory to communicate.

I Fixed size, allocated at startup.

I Divided into multiple small areas for different purposes.

I >99% of the shared memory is used by the shared buffer pool
(shared buffers).

I Most shared memory areas are protected by LWLocks



Shared Memory / Buffer Pool

I Consists of a number of 8k buffers.

I sized by shared buffers
I e.g shared buffers=1GB –> 131072 buffers

I Each buffer can hold one page
I Buffer can be dirty
I Buffer must be “pinned” when accessed, so that it’s not

evicted
I Buffer can be locked in read or read/write mode.

Buffer replacement uses Clock algorithm



Shared Memory / Buffer Pool

typedef struct sbufdesc

{

BufferTag tag; /* ID of page contained in buffer */

BufFlags flags; /* see bit definitions above */

uint16 usage_count; /* usage counter for clock sweep code */

unsigned refcount; /* # of backends holding pins on buffer */

int wait_backend_pid; /* backend PID of pin-count waiter */

slock_t buf_hdr_lock; /* protects the above fields */

int buf_id; /* buffer’s index number (from 0) */

int freeNext; /* link in freelist chain */

LWLock *io_in_progress_lock; /* to wait for I/O to complete */

LWLock *content_lock; /* to lock access to buffer contents */

} BufferDesc;



Shared Memory / Proc Array

One entry for each backend (PGPROC struct, < 1KB). Sized by
max connections.

I database ID connected to
I Process ID
I Current XID
I stuff needed to wait on locks

Acquiring an MVCC snapshot scans the array, collecting the XIDs
of all processes.

Deadlock checker scans the lock information to form a locking
graph.



Shared Memory / Lock Manager

Lock manager handles mostly relation-level locks:

I prevents a table from begin DROPped while it’s being used

I hash table, sized by max locks per transaction *
max connections

I deadlock detection

I use “SELECT * FROM pg locks” to view

Aka known as heavy-weight locks. Data structures in shared
memory are protected by lightweight locks and spinlocks.



Shared Memory / Other stuff

Communication between backends and aux processes:

I AutoVacuum Data
I Checkpointer Data
I Background Worker Data
I Wal Receiver Ctl
I Wal Sender Ctl

pgstat

I Backend Status Array
I Backend Application Name Buffer
I Backend Client Host Name Buffer
I Backend Activity Buffer



Shared Memory / Other stuff

Other caches (aka. SLRUs):

I pg xlog
I pg clog
I pg subtrans
I pg multixact
I pg notify

Misc:

I Prepared Transaction Table
I Sync Scan Locations List
I BTree Vacuum State
I Serializable transactions stuff



Shared Memory / Other stuff

Communication with postmaster:

I PMSignalState

Shared Cache Invalidation:

I shmInvalBuffer



Locking
1. Lock manager (heavy-weight locks)

I deadlock detection
I many different lock levels
I relation-level
I pg locks system view

2. LWLocks (lightweight locks)

I shared/exclusive
I protects shared memory structures like buffers, proc array
I no deadlock detection

3. Spinlocks

I Platform-specific assembler code
I typically single special CPU instruction
I busy-waiting
I used to implement higher level locks



Shared Memory / What’s not in shared memory

I Catalog caches
I Plan cache
I work mem

Data structures in shared memory are simple, which is good for
robustness.



Part 3: Backend-private memory / Caches
Relcache:

I information about tables or indexes

Catalog caches, e.g:

I operators
I functions
I data types

Plan cache:

I plans for prepared statements
I queries in PL/pgSQL code

When a table/operator/etc. is dropped or altered, a “shared cache
invalidation” event is broadcast to all backends. Upon receiving
the event, the cache entry for the altered object is invalidated.



Backend-private memory

All memory is allocated in MemoryContexts. MemoryContexts
form a hierarchy:

I TopMemoryContext (like malloc())
I per-transaction context (reset at commit/rollback)
I per-query context (reset at end of query)
I per-expression context (reset ˜ between every function call)

Most of the time, you don’t need to free small allocations
individually.



Backend-private memory

TopMemoryContext: 86368 total in 12 blocks; 16392 free (37 chunks); 69976 used

TopTransactionContext: 8192 total in 1 blocks; 7256 free (0 chunks); 936 used

TableSpace cache: 8192 total in 1 blocks; 3176 free (0 chunks); 5016 used

Type information cache: 24248 total in 2 blocks; 3712 free (0 chunks); 20536 used

Operator lookup cache: 24576 total in 2 blocks; 11848 free (4 chunks); 12728 used

MessageContext: 32768 total in 3 blocks; 13512 free (0 chunks); 19256 used

Operator class cache: 8192 total in 1 blocks; 1640 free (0 chunks); 6552 used

smgr relation table: 24576 total in 2 blocks; 9752 free (3 chunks); 14824 used

TransactionAbortContext: 32768 total in 1 blocks; 32736 free (0 chunks); 32 used

Portal hash: 8192 total in 1 blocks; 1640 free (0 chunks); 6552 used

PortalMemory: 8192 total in 1 blocks; 7880 free (0 chunks); 312 used

PortalHeapMemory: 1024 total in 1 blocks; 784 free (0 chunks); 240 used

ExecutorState: 8192 total in 1 blocks; 784 free (0 chunks); 7408 used

printtup: 8192 total in 1 blocks; 8160 free (0 chunks); 32 used

ExprContext: 0 total in 0 blocks; 0 free (0 chunks); 0 used

Relcache by OID: 24576 total in 2 blocks; 13800 free (2 chunks); 10776 used

CacheMemoryContext: 516096 total in 6 blocks; 82480 free (1 chunks); 433616 used

pg_class_tblspc_relfilenode_index: 3072 total in 2 blocks; 1968 free (0 chunks); 1104 used

pg_index_indrelid_index: 1024 total in 1 blocks; 88 free (0 chunks); 936 used

...

MdSmgr: 8192 total in 1 blocks; 6960 free (0 chunks); 1232 used

ident parser context: 0 total in 0 blocks; 0 free (0 chunks); 0 used

hba parser context: 7168 total in 3 blocks; 3920 free (1 chunks); 3248 used

LOCALLOCK hash: 8192 total in 1 blocks; 1640 free (0 chunks); 6552 used

Timezones: 83480 total in 2 blocks; 3712 free (0 chunks); 79768 used

ErrorContext: 8192 total in 1 blocks; 8160 free (3 chunks); 32 used



Part 3: Error handling / ereport()

ereport(ERROR,

errmsg("relation \"%s\" in %s clause not found in FROM clause",

thisrel->relname,

LCS_asString(lc->strength)),

parser_errposition(pstate, thisrel->location)));

I Jumps out of the code being executed, like a C++ exception.
(uses longjmp())

I Sends the error to the client

I Prints the error to the log

I Error handler aborts the (sub)transaction:

I per-transaction memory context is reset
I locks are released



Part 3: Error handling / FATAL

Typically for serious, unexpected, internal errors:

if (setitimer(ITIMER_REAL, &timeval, NULL) != 0)

elog(FATAL, "could not disable SIGALRM timer: %m");

I Also when the client disconnects unexpectedly.

I Like ERROR, jumps out of the code being executed, and
sends the message to client and log

I Releases locks, detaches from shared memory, and terminates
the process.

I The rest of the system continues running.



Part 3: Error handling / PANIC

Serious events that require a restart:

ereport(PANIC,

(errcode_for_file_access(),

errmsg("could not open transaction log file \"%s\": %m", path)));

I Prints the error to the log

I Terminates the process immediately with non-zero exit status.

I Postmaster sees the unexpected death of the child process,
and sends SIGQUIT signal to all remaining child processes, to
terminate them.

I After all the children have exited, postmaster restarts the
system (crash recovery)



Part 3: Backend programming

I Hierarchical memory contexts
I Error handling

->

Robustness



Thank you

I PostgreSQL is easily to extend
I PostgreSQL source code is easy to read

Start hacking! Questions?


